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Abstract
Quasiperiodic functions (QPFs) are characterized by their full vortex structure
in one unit cell. This characterization is much finer and more sensitive than
the topological one given by the total vorticity per unit cell (the ‘Chern index’).
It is shown that QPFs with an arbitrarily prescribed vortex structure exist by
constructing explicitly such a ‘standard’ QPF. Two QPFs with the same vortex
structure are equivalent, in the sense that their ratio is a function which is
strictly periodic, nonvanishing and at least continuous. A general QPF can
then be approximately reconstructed from its vortex structure on the basis of
the standard QPF and the equivalence concept. As another application of
this concept, a simple method is proposed for calculating the quasiperiodic
eigenvectors of periodic matrices. Possible applications to the quantum-chaos
problem on a phase-space torus are briefly discussed.

PACS numbers: 03.65.Ca, 03.65.Vf, 05.45.Mt

1. Introduction

In this paper we study basic and physically relevant aspects of quasiperiodic functions (QPFs)
and derive exact results for them. A QPF is defined here as a complex smooth function
F(x, y), periodic up to phase factors in the real variables x and y:

F(x + 1, y) = exp[iα(x, y)]F(x, y) (1)

F(x, y + 1) = exp[iβ(x, y)]F(x, y) (2)

where the phases α and β are real smooth functions of x and y and the basic cell of
quasiperiodicity is chosen, for simplicity and without loss of generality, as the unit torus.
QPFs emerge in a natural way in a variety of physical problems. We mention here, for
example, the quasiperiodic solutions of the Ginzburg–Landau equations for the order parameter
in superconductivity near the upper critical field [1]; quantum-mechanical representations
1 Permanent address: Mathematical Physics Department, Voronezh State University, University Square 1, Voronezh
394693, Russia.
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based on a lattice in phase space [2], which turn out to be most natural for describing the
dynamics of electrons in solids; magnetic Bloch functions [3–10] and quantum-dynamical
eigenstates on a phase-space torus [11–19]; quasiperiodic functions for the fractional
quantum Hall effect [20, 21]; and quasiperiodic wave fields introduced recently in Fourier
optics [22, 23].

Let us recall here briefly some known properties of QPFs (see more details in section 2
and in the appendix). Due to the single-valuedness of a QPF, the total phase change of
F(x, y) by going around the unit-cell boundary in, say, the counterclockwise direction must
be an integer multiple N of 2π . This phase change originates from the vortices of F(x, y),
which are phase singularities located at the zeros of F, with equiphase lines radiating out
from each zero. For a simple (first-order) zero, the phase circulates around the zero by 2π
counterclockwise (vortex sign +1) or clockwise (vortex sign −1). A zero of order n > 1 may
be viewed as the coincidence of n simple vortices, generally of different signs (generically,
however, the zeros are simple [24]). Then, if the number of positive (negative) vortices in one
unit cell is N+ (N−), one must haveN = N+ −N−. The integer N is thus the total vorticity in
one unit cell and is an important topological characterization of a QPF.

For example, the total vorticity N of a magnetic Bloch state in the reciprocal-space cell
(the ‘magnetic Brillouin zone’) is the integer quantum Hall conductance (in units of e2/h)
carried by the corresponding magnetic band [3–5, 7, 8]. The analogous quantity for quantum-
dynamical eigenstates on a phase-space torus is the Chern index [13–17, 25], which measures
the sensitivity of an eigenstate to variations in the toral boundary conditions and reflects
some quantum signatures of order and chaos in a semiclassical regime. The coherent-state
representation of a toral state [11] is a QPF F(x, y) whose vortices are all positive (N = N+)

and isotropic, i.e. the equiphase lines in the infinitesimal vicinity of a zero are distributed
uniformly around it. In this case, N is the dimension of the toral Hilbert space and gives the
scaled Planck’s constant h = 1/N . In a semiclassical regime (N � 1), the N zeros of a toral
eigenstate are distributed along lines for integrable systems and are spread almost uniformly on
the torus for chaotic systems [11]. A remarkable fact is that the N zeros completely determine
F(x, y) (up to a constant normalization factor) [11], so that they provide a good representation
(the ‘stellar’ representation [11, 26]) of toral states (see section 4.2).

In addition to this fact, one should observe that: (a) vortices are associated with several
important physical properties and their structure can be measured experimentally [1, 23];
(b) being a topological quantity, the total vorticity is not sensitive to small changes in the
system. All these observations motivate one to characterize general QPFs by their vortex
structure in a more detailed fashion than by just the total vorticity. One is then led to ask to
what extent a general QPF can be determined from such a characterization. These are the
main issues addressed in this paper. We shall take into account all the relevant characteristics
of the vortex structure: the location of each vortex (zero) in the unit cell, its sign, the
eccentricity of the ellipse describing the anisotropy of equiphase lines around the vortex and
the orientation of the ellipse axes [27] (see section 2). We first show that a QPF with an
arbitrarily prescribed vortex structure exists by constructing it explicitly using Jacobi ϑ3

functions [28, 29]; we call it the ‘standard’ QPF. Some of its properties are studied and the
case of positive isotropic vortices is investigated in detail. We then show that two QPFs with
the same vortex structure are necessarily equivalent, i.e. (by definition) their ratio is a function
which is strictly periodic, nonvanishing and at least continuous. Thus, a general QPF can
be approximately ‘reconstructed’ from its vortex structure on the basis of the standard QPF
and the equivalence concept. As another application of this concept, we propose a simple
method for calculating the continuous quasiperiodic eigenvectors of periodic matrices. Such
matrices arise in several physical contexts, e.g., Bloch electrons in a magnetic field [3, 4, 7]
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and quantum dynamics on a phase-space torus [12, 13, 15]. The continuity of the eigenvectors
is required, e.g., in the construction of an orthogonal set of localized orbitals in a magnetic
field (‘magnetic Wannier functions’) [6, 7, 10]. Possible applications to the quantum-chaos
problem on a phase-space torus are briefly discussed.

This paper is organized as follows. In section 2 and in the appendix, we summarize
basic known properties of QPFs and of general vortex structure. In section 3, an exact closed
expression for the phase of the ϑ3 function is derived and some of its properties are studied.
In section 4, we explicitly construct a ‘standard’ QPF having an arbitrarily prescribed vortex
structure and study in detail the special case of positive isotropic vortices. In section 5,
we introduce and discuss the concept of equivalence of QPFs; the reconstruction of a QPF
from its vortex structure is described. In section 6, we propose a simple method for calculating
the quasiperiodic eigenvectors of periodic matrices on the basis of the equivalence concept.
Conclusions are presented in section 7, which also includes a brief discussion of possible
applications to the quantum-chaos problem on a phase-space torus.

2. Quasiperiodic functions and vortex structure

Given a QPF with total vorticityN = N+−N− in one unit cell (see the introduction), it is always
possible to make a phase transformation F(x, y) → FN(x, y) = exp[−iϕ(x, y)]F(x, y) so
that the quasiperiodicity conditions (1) and (2) for FN(x, y) assume the simple form:

FN(x + 1, y) = FN(x, y) (3)

FN(x, y + 1) = exp(−2π iNx)FN(x, y). (4)

The proof of this is given in the appendix. We shall therefore restrict ourselves from now on
to the class of QPFs satisfying (3) and (4). One can easily derive (see [22] and the appendix)
a general and useful expression for FN(x, y) in the case of N �= 0:

FN(x, y) =
|N |−1∑
j=0

∞∑
n=−∞

exp

[
2π in

(
x +

j

|N |
)]
φj

(
y +

n

N

)
(5)

where the |N | functions φj (y), j = 0, . . . , |N | − 1, are uniquely determined by FN(x, y).
For N = 0, FN(x, y) is strictly periodic and can be expanded as a two-dimensional Fourier
series. One can express (5) in the equivalent, ‘dual’ form [22]:

FN(x, y) = exp(−2π iNxy)
|N |−1∑
j=0

∞∑
n=−∞

exp

[
2π in

(
y +

j

|N |
)]
φ̃j

(
−x +

n

N

)
(6)

where

φ̃j (x) =
|N |−1∑
s=0

∫ ∞

−∞
dy exp [2π i(js/N −Nxy)]φs(y). (7)

The functions {φj(y)}|N |−1
j=0 or {φ̃j (x)}|N |−1

j=0 are usually localized and may be interpreted as the
‘Wannier functions’ [10, 22] associated with the ‘extended’ function FN(x, y).

We now consider basic properties of the vortex structure of general complex functions
f (x, y) (see, e.g., [27]). We express f (x, y) in terms of its real and imaginary parts,
f (x, y) = R(x, y)+iI (x, y), and focus on a vortex located at a simple zero (x0, y0) of f (x, y)
(an intersection of the curves defined by R(x, y) = 0 and I (x, y) = 0). For simplicity and
without loss of generality, we assume that (x0, y0) = (0, 0). Then, sufficiently close to this
zero, one has

f (x, y) = ρ exp(iχ) ≈ Rxx + Ryy + i(Ixx + Iyy) (8)
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where (ρ, χ) are the modulo and phase of f (x, y), and Rx = ∂R/∂x|(x,y)=(0,0), etc. The
contours of constant ρ are approximately ellipses,

ρ2 ≈ ax2 + 2cxy + by2 (9)

where a = R2
x + I 2

x , b = R2
y + I 2

y and c = RxRy + IxIy . The shape and orientation of the
ellipse (9) are fully determined by the eigenvalues and eigenvectors of the symmetric matrix
(a, c; c, b). The eigenvalues λ1,2 (λ1 � λ2) give the eccentricity ε of the ellipse while the
orthogonal eigenvectors are in the direction of the ellipse axes:

ε =
√

1 − λ1

λ2
= 1√

2|ω|(d
2 − 4ω2)1/4[d − (d2 − 4ω2)1/2]1/2 (10)

tan(2θ) = 2c

a − b
(11)

where ω = RxIy − RyIx, d = a + b and θ is the angle between an axis of the ellipse and the
x axis. Concerning the phase χ of f (x, y), a straightforward calculation using (8), (10) and
(11) yields

dχ

dγ
≈ πη

A
r2 = η

(1 − ε2)1/2 cos2(γ − θ) + (1 − ε2)−1/2 sin2(γ − θ)
(12)

where (r, γ ) are the modulo and phase of z = x + iy, η = sgn(ω) and A = πρ2/|ω| is the
ellipse area. In equation (12), r = r(γ ) gives the ‘polar’ plot of the ellipse (9). It is then
easy to check that

∫ 2π
0 dγ (dχ/dγ ) = 2πη, so that η = sgn(ω) is just the sign of the vortex.

The main and important conclusion from (12) is: the distribution of equiphase lines in the
infinitesimal vicinity of a vortex is completely determined by its sign (η) and by the shape
(ε) and orientation (θ ) of the associated ellipse. In particular, this distribution is uniform
(constant dχ/dγ ) if and only if the ellipse is a circle (ε = 0, an isotropic vortex).

3. Phase of ϑ3 function

The Jacobi ϑ3 function [28, 29],

ϑ3(z|τ ) ≡
∞∑

n=−∞
exp[i(πτn2 + 2nz)] Im τ > 0 (13)

is an entire analytic function of order 2 in the complex variable z and is characterized by the
parameter τ . It satisfies the quasiperiodicity conditions [28]:

ϑ3(z + π |τ ) = ϑ3(z|τ ) ϑ3(z + πτ |τ ) = exp[−i(2z + πτ)]ϑ3(z|τ ). (14)

Function (13) emerges naturally in many physical problems exhibiting some kind of two-
dimensional periodicity [1, 11, 13, 20–23] and has a quite simple vortex structure (see below).
It is instructive to understand how this structure affects the phase of (13). We derive here an
exact closed expression for this phase and study some of its properties.

We start from the formula

ln
ϑ3(z|τ )
ϑ3(0|τ ) = 4

∞∑
n=1

(−1)n

n

qn

1 − q2n
sin2(nz) q ≡ exp(iπτ) (15)

which is a special case of formula 16.30.3 in [29]. It is easy to see that the expansion (15)
converges only for

| Im z| � π

2
Im τ. (16)



Vortex structure and characterization of quasiperiodic functions 10105

To extend equation (15) beyond the strip (16), we first express z as z = z̃ + mπτ , where
−(π/2) Im τ � Im z̃ < (π/2) Im τ and m is some integer (the pair (z̃,m) is uniquely
determined by z). Using then the quasiperiodicity conditions (14), we easily find that

ln
ϑ3(z̃ +mπτ |τ )

ϑ3(0|τ ) = 4
∞∑
n=1

(−1)n

n

qn

1 − q2n
sin2(nz̃)− i(2mz̃ +m2πτ). (17)

We now express z̃ and τ in terms of their real and imaginary parts as follows: z̃ = π(x̃ + iỹ)
and τ = τx + iτy . Taking the imaginary part of (17), we then obtain the following general
expression for the phase of the ϑ3 function:

argϑ3(z̃ +mπτ |τ ) = 2
∞∑
n=1

(−1)n

n

qn

1 − q2n
sin(2πnx̃) sinh(2πnỹ)

(18)
− 2πmx̃ −m2πτx + argϑ3(0|τ ).

The constant phase argϑ3(0|τ ) has to be calculated separately, but it vanishes in some cases
(e.g., for imaginary τ , see below).

The phase (18) should be singular at a vortex (zero) of ϑ3(z|τ ). It is well known [28] that
the zeros of ϑ3(z|τ ) are simple and form a lattice,

z = zl,m = (
l − 1

2

)
π +

(
m− 1

2

)
πτ (19)

for all integer pairs (l,m), so that one has precisely one zero per unit cell of quasiperiodicity
(see (14)). The singularity of (18) at any of the points (19) can be clearly exhibited in the case
of imaginary τ (τ = iτy). Consider in this case the ‘horizontal’ lines z = π(x − τ/2 +mτ)
(x = x̃), corresponding to z̃ = −πτ/2. We easily find from (18) that on these lines

argϑ3(πx − πτ/2 +mπτ |τ ) = πsaw(x)− 2πmx (20)

where the sawtooth function saw(x) ≡ x for −1/2 � x < 1/2 and is periodically continued
beyond this interval (note that argϑ3(0|τ ) = 0 in this case since ϑ3(0|τ ) is real and
positive for imaginary τ ). Clearly, (20) is discontinuous at a zero (19) as z is varied in
the horizontal (x) or in the vertical (y) direction. The magnitude of the discontinuity in
both directions is π . This discontinuity is due to the passage from one equiphase line to the
opposite one through an isotropic vortex (19). We recall here that a zero z0 of an analytic
function �(z) is an isotropic and positive vortex because sufficiently close to z0 one has
�(z) ≈ �′(z0)(z− z0) = |�′(z0)(z− z0)| exp[i(γ + γ0)], where γ, γ0 and γ + γ0 ≈ χ are the
phases of z−z0,�

′(z0) and�(z), respectively. Figure 1 shows the phase plot ofϑ3[π(x+iy)|i]
in two unit cells.

4. Standard quasiperiodic function

4.1. General

We construct here explicitly a ‘standard’ QPF FS,V(x, y) having an arbitrarily prescribed
vortex structure V : Nv = N+ +N− vortices in one unit cell, with locations {(x0,i , y0,i)}Nv

i=1 and
characteristics {ηi, εi, θi}Nv

i=1 (see section 2). Some properties of the standard QPF are studied
and the case of positive and isotropic vortices (ηi = 1, εi = 0 for all i) is considered in detail
in section 4.2.

We start by considering the function

Fη(x, y) =
∞∑

n=−∞
exp(2π inx)φ(y + ηn) (21)
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−π −π/2 ππ/20

x

y

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

Figure 1. Phase of ϑ3[π(x + iy)|i] in two unit cells of quasiperiodicity, with one vortex per unit
cell. The vortices, located at (x, y) = (0.5,±0.5), are positive and isotropic.

where η = ±1,

φ(y) = exp(−πgy2 − 2π iwy) (22)

and g and w are complex numbers with Re g > 0. Function (21) is a QPF with total vorticity
N = η = ±1 in one unit cell (compare with (5)). We show that (21) has precisely one zero
with vorticity η in the unit cell, and we shall find its location (x0, y0) and characteristics (ε, θ)
in terms of g and w. Inserting (22) in (21), we immediately get

Fη(x, y) = φ(y)ϑ3[π(x + iηgy − ηw)|ig] (23)

where ϑ3(z|τ ) is the ϑ3 function (13). Let us express g and w in terms of their real and
imaginary parts: g = g1 + ig2 (g1 > 0) and w = w1 + iw2. Using the formula (19) for the
zeros of ϑ3(z|τ ), we easily find that the zeros of (23) are (xl, ym), where

xl = l − 1

2
+ η

(
w1 +

w2g2

g1

)
ym = η

(
m− 1

2

)
+
w2

g1
(24)

for all integer pairs (l,m). It is clear from (24) that there is precisely one zero (x0, y0) in one
unit cell, so that its vorticity must be N = η. It is also clear that this zero can be positioned
arbitrarily in the unit cell just by varying w.
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Next, let us expand (23) around a zero. Using the notation δx = x − xl, δy = y− ym and
D = πφ(ym)ϑ

′
3[π(xl + iηgym − ηw)|ig], where ϑ ′

3(z|τ ) is the derivative of the ϑ3 function,
we obtain, to first order in δx and δy,

Fη(x, y) = ρ exp(iχ) ≈ D(δx − ηg2δy + iηg1δy)

so that the contours of constant ρ around a zero are approximately given by

ρ2

|D|2 ≈ (δx)2 − 2ηg2δxδy +
(
g2

1 + g2
2

)
(δy)2. (25)

By comparing (25) with (9) and using relations (10) and (11), we can write the expressions for
(ε, θ) in terms of η and g. These expressions can be inverted by a straightforward but lengthy
calculation. The final result is

g1 = (1 − ε2)1/2

1 − ε2 cos2(θ)
g2 = −ηε

2 sin(θ) cos(θ)

1 − ε2 cos2(θ)
. (26)

One should note that for a given ellipse (25), θ assumes two values giving the orientations
of the two axes and differing by π/2 (see relation (11)). The meaning of the corresponding
values of g1 in (26) can be easily understood by considering the simple case of θ = 0, π/2. In
this case, g2 = 0 and (22) represents a coherent state with width (g1)

−1/2. It is easy to check
from (26) that g1(θ = π/2) = 1/g1(θ = 0). Using this in the dual expression (6) with (7),
it follows that if θ = 0 is associated with (21), θ = π/2 is associated with the π/2-rotated
QPF Fη(y,−x). Then, the relation g1(0)g1(π/2) = 1 expresses just the minimal product
of quantum uncertainties for coherent states in the (x, y) ‘phase space’. The corresponding
‘squeezing parameter’ [30] is g1(π/2)/g1(0) = 1 − ε2.

We thus see that it is possible to construct an ‘elementary’ QPF (21) with precisely one
simple zero in the unit cell, with arbitrary vortex characteristics. The latter determine uniquely
(21) with (22). The ‘standard’ QPF will then be defined as the product ofNv elementary QPFs:

FS,V(x, y) =
Nv∏
i=1

Fηi (x, y) (27)

where Fηi (x, y), i = 1, . . . , Nv, are functions (21) with (22) defined by complex numbers
(g(i), w(i)) which are uniquely determined by an arbitrarily prescribed vortex structure
V = {(x0,i , y0,i ); ηi, εi, θi}Nv

i=1. Clearly, the function (27) satisfies the quasiperiodicity
conditions (3) and (4) with

N =
Nv∑
i=1

ηi.

An exact expression for the phase of (27) in terms of the vortex characteristics can be easily
written using (23) and expression (18) for the phase of the ϑ3 function. Figure 2 shows the
phase plot of a standard QPF. Figure 3 is a contour plot of the modulo of this QPF, showing
how the vortex structure affects the localization properties of (27) in one unit cell.

Let us denote the positive and negative vortices by (i,+) and (i ′,−), respectively, where
i = 1, . . . , N+ and i ′ = 1, . . . , N−, and assume, for definiteness, that N+ � N−. Expression
(27) can then be written as

FS,V(x, y) =
N−∏
i=1

Fi,+(x, y)Fi,−(x, y)
N+∏

i=N−+1

Fi,+(x, y) = FS,V0(x, y)FS,V+(x, y) (28)

where the functions FS,V0(x, y) and FS,V+(x, y) are defined by the first and second product in
(28), respectively. The function FS,V0(x, y) is strictly periodic, since every pair (i,+; i,−),
i = 1, . . . , N−, contributes zero vorticity. Thus, the total vorticity N = N+ − N− may be
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−π −π/2 ππ/20

x

y

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 2. Phase of a standard QPF (27) with three vortices per unit cell. The vortices are located
at the corners of an equilateral triangle (at the centre of the unit cell) with side length equal to 0.5.
The two vortices at the basis of the triangle are positive while the third vortex is negative, giving a
total vorticity N = 1. All the vortices are anisotropic with eccentricity ε = √

3/2 and the angles
θ between the major axis of the associated ellipse and the positive x axis are 30◦, 150◦ and 270◦.

x

y

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 3. Modulo of the standard QPF whose phase plot is shown in figure 2. Darker regions
correspond to lower values of the modulo. Because of the particular orientations of the major axes
of the anisotropy ellipses, the modulo assumes its smallest values inside the triangle.

attributed entirely to FS,V+(x, y), featuring only the N ‘extra’ positive vortices. Since the latter
vortices can be chosen in different ways, there is an obvious arbitrariness in the factorization
(28).
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By expanding the products in (28) with (21), the QPFs FS,V(x, y) and FS,V+(x, y) can
be expressed both as sums (5) featuring |N | independent Wannier functions {φS,j (y)}|N |−1

j=0

and
{
φ+

S,j (y)
}|N |−1
j=0 , respectively. While |N | is equal to the number of elementary QPFs in

FS,V+(x, y), it is generally much smaller than the corresponding number Nv = N+ + N− in

a standard QPF FS,V(x, y). Exact expressions for {φS,j (y)}|N |−1
j=0

(
or

{
φ+

S,j (y)
}|N |−1
j=0

)
can be

found easily using standard methods (see, e.g., appendix A in [22]). One can then verify that
the localization of the functions {φS,j (y)}|N |−1

j=0 is generally similar to that of (22), i.e., they
decay faster than exponentially (see the explicit expression (30) below in the case of positive
isotropic vortices). The same decay rate is exhibited by the Fourier coefficients of the strictly
periodic function FS,V0(x, y) (N = 0)which connects FS,V+(x, y)with FS,V(x, y) (see further
discussion in section 5).

4.2. Coherent-state representation of toral quantum states

In the case that all the vortices are positive and isotropic (ηi = 1, εi = 0, i = 1, . . . , N) with
arbitrary locations in the unit cell, the standard QPF FS,V(x, y) is essentially the coherent-
state representation of a general quantum state on a phase-space torus [11]. Consider a unit
torus T

2 in the (x, y) phase space, where x is position and, for convenience, −y is interpreted
as momentum. Quantization on T

2 is possible only if the scaled Planck’s constant satisfies
h = 1/p, where p (an integer) is the number of independent quantum states for given toral
boundary conditions; these conditions are specified by a Bloch quasivector w = (w1, w2)

ranging in some ‘Brillouin zone’ [15, 16, 19]. The position (x) representation of a general
state |�w〉 on T

2 is [18, 19]

〈x|�w〉 =
p−1∑
m=0

ν(m; w)
∞∑

n=−∞
exp(−2π inw2)δ(x − w1 −m/p − n) (29)

where {ν(m; w)}p−1
m=0 are arbitrary complex coefficients. The coherent-state representation of

|�w〉 is 〈x, y|�w〉, where 〈x|x ′, y ′〉 = (πh̄)−1/4 exp{−[(x − x ′)2 + iy ′(2x − x ′)]/(2h̄)}. After
a straightforward calculation using (29), (6) and (7), we find, omitting an uninteresting factor,
that 〈x, y|�w〉 = FN(x, y). Here N = p and the QPF FN(x, y) is given by (5) with

φj(y) = ν̄(j ; w) exp(−πNy2 − 2π iNwy) j = 0, . . . , N − 1 (30)

where ν̄(j ; w) = exp[2π i(N − j)w2]ν(N − j ; w) (ν̄(0; w) = ν(0; w)) and w = w1 + iw2.
More explicitly, we have

FN(x, y) = exp(−πNy2 − 2π iNwy)

×
N−1∑
s=0

ξs(w) exp

[
−πs

2

N
− 2π is(z−w)

]
ϑ3[πN(z −w − is/N)|iN] (31)

where z = x + iy and ξs(w) = ∑N−1
j=0 ν̄(j ; w) exp(−2π isj/N). Similar to the ϑ3 function,

the sum in (31) is an entire analytic function. Therefore, the QPF (31) must have precisely N
positive and isotropic vortices in one unit cell, whose locations we denote by {(x0,i , y0,i )}Ni=1.
An important result in [11] is that the sum in (31) can be expressed as a product,

FN(x, y) = exp(−πNy2 − 2π iNwy)
N∏
i=1

ϑ3[π(z−w(i))|i] (32)

where w(i) = x0,i + iy0,i + (1 + i)/2 mod(1, i) and one has the condition

1

N

N∑
i=1

w(i) = w. (33)
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Using relations (22)–(24), it is easy to see that (32) with (33) is just the standard QPF (27) in
the case of positive isotropic vortices (ηi = 1, εi = 0 and g(i) = 1 for all i). Given N such
vortices whose locations are arbitrary apart from condition (33), there always exists a nonzero
vector {ξs(w)}N−1

s=0 in (31) satisfying the N equations {FN(x0,i , y0,i ) = 0}Ni=1. This is because
(33) is precisely the condition for the vanishing of the determinant associated with these
equations, as one can verify easily using (14) in (31). We thus see that a toral quantum state
is completely determined by its N zeros in the coherent-state representation (equation (32))
and that the locations of these zeros can be specified arbitrarily, corresponding to the arbitrary
specification of the N complex coefficients {ξs(w)}N−1

s=0 . Only N − 1 of these coefficients are
actually independent (since a quantum state is defined up to a constant factor); similarly, there
are only N − 1 independent zeros because of the restriction (33). The zeros thus provide a
good representation (the ‘stellar’ representation [11, 26]) of toral states.

5. Equivalence of quasiperiodic functions

Let us assume that two QPFs, FN(x, y) and F ′
N(x, y), have precisely the same vortex structure

V = {(x0,i , y0,i); ηi, εi, θi}Nv
i=1. We show that such QPFs are equivalent, i.e. by definition,

FN(x, y) = ψ(x, y)F ′
N(x, y) (34)

whereψ(x, y) is a strictly periodic, nonvanishing and at least continuous function. The inverse
statement is obviously true: The equivalence relation (34) implies that FN(x, y) and F ′

N(x, y)

have the same vortex structure. This equivalence concept will then be discussed and applied
in this and the next section.

Consider a (common) vortex of FN(x, y) and F ′
N(x, y). For simplicity and without loss

of generality, we assume that this vortex is a simple zero located at (x0, y0) = (0, 0). We
denote the modulo and phase of FN(x, y) and F ′

N(x, y) by (ρ, χ) and (ρ ′, χ ′), respectively.
Sufficiently close to the vortex, these quantities satisfy the approximate relations (9) and (12)
which become exact in the limit r → 0. It is clear from (10) and (11) that (ε, θ) determine
the symmetric matrix (a, c; c, b) in (9) up to a constant positive factor. Since FN(x, y) and
F ′
N(x, y) have the same vortex characteristics, it follows that the ratio ρ/ρ ′ assumes a well-

defined positive value ς in the limit r → 0, i.e. ς is independent of the phase γ . Similarly,
relation (12) implies that limr→0 d(χ −χ ′)/dγ = 0 or limr→0(χ−χ ′) = χ0, a constant phase
independent of γ . We thus see that the ratio FN(x, y)/F ′

N(x, y) = ψ(x, y) is well defined at
a vortex,

lim
r→0

ψ(x, y) = ς exp(iχ0) �= 0 (35)

so that ψ(x, y) is a nonvanishing and at least continuous function everywhere. Since both
FN(x, y) and F ′

N(x, y) satisfy the quasiperiodicity conditions (3) and (4), ψ(x, y) is also a
strictly periodic function.

By combining (34) with the results of the previous section, we see that all the equivalent
QPFs with a given, arbitrarily prescribed vortex structure V form precisely the equivalence
class CV of the standard QPF FS,V(x, y),

CV = {FN(x, y) = ψ(x, y)FS,V(x, y)} (36)

for all strictly periodic, nonvanishing and at least continuous functionsψ(x, y). By expanding
ψ(x, y) in a Fourier series,

ψ(x, y) =
∞∑

n=−∞

∞∑
n′=−∞

ψn,n′ exp[2π i(nx + n′y)] (37)
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the equivalence relation in (36) can be expressed in the representation of the corresponding
Wannier functions {φj(y)}|N |−1

j=0 in (5). After a straightforward but lengthy calculation using
(37), we obtain

φj(y) =
∞∑

n=−∞

∞∑
n′=−∞

ψn,n′ exp

{
2π i

[
jn

|N | + n′
(
y +

n

N

)]}
φS,(j+ηn′)mod |N |

(
y +

n

N

)
(38)

(j = 0, . . . , |N | − 1), where η = sgn(N) and {φS,j (y)}|N |−1
j=0 are the Wannier functions for

FS,V(x, y). As pointed out in section 4, the latter functions can be calculated analytically and
their decay rate is faster than exponential. In addition, one should note the following properties
of the Fourier coefficients ψn,n′ . First, ψ(x, y) �= 0 implies that ψ0,0 �= 0. Second, since
ψ(x, y) is at least continuous, ψn,n′ exhibit at least a power-law decay, e.g., such as (nn′)−2,
and faster decay rates are easily obtained if ψ(x, y) has continuous derivatives at the vortices.
Thus, {φj(y)}|N |−1

j=0 can be generally well approximated in terms of {φS,j (y)}|N |−1
j=0 using only

coefficients ψn,n′ with |n| not much larger than |N |. If ψ(x, y) is very close to a constant, the
approximation {φj(y) ≈ ψ0,0φS,j (y)}|N |−1

j=0 may be sufficient.
It is instructive to compare the equivalence relation in (36) with relation (28). Since

FS,V0(x, y) is strictly periodic likeψ(x, y), the Wannier functions {φS,j (y)}|N |−1
j=0 forFS,V(x, y)

can be expressed in terms of the corresponding functions
{
φ+

S,j (y)
}|N |−1
j=0 for FS,V+(x, y) by a

relation analogous to (38). Now, however, this relation is not invertible since, unlike ψ(x, y),
FS,V0(x, y) generally vanishes at a finite number 2N− of vortices,N− positive andN− negative.

As a consequence,
{
φ+

S,j (y)
}|N |−1
j=0 cannot be expressed in terms of {φS,j (y)}|N |−1

j=0 . This reflects
the fact that while FS,V(x, y) and FS,V+(x, y) are associated with the same value of the total
vorticity N, they are not equivalent since the vortex structures V and V+ are different.

As an application of the equivalence concept, let us assume that the vortex structure
of a general QPF FN(x, y), as well as its values on a sufficiently large grid G of points
(x = l, y = l′)/(2L + 1), l, l′ = 0, . . . , 2L, are known from experimental or numerical
measurements. A proper ‘reconstruction’ of FN(x, y) from this data can be performed as
follows. First, one constructs the standard QPF (27) having the given vortex characteristics
of FN(x, y). Then, the set of values of FN(x, y)/FS,V(x, y) on G is used for a calculation
of the leading Fourier coefficients ψn,n′ in (37), n, n′ = −L, . . . , L. The resulting truncated
Fourier expansion defines a smooth approximation ψ̃(x, y) of the ‘envelope’ functionψ(x, y).
From the properties above of ψn,n′ , we see that the accuracy of this approximation is at least
O(L−2). Finally, FN(x, y) is approximated by a QPF F̃ N (x, y) in the same equivalence
class (36), FN(x, y) ≈ F̃ N (x, y) = ψ̃(x, y)FS,V(x, y). Alternatively, one can use relation
(38) to obtain good approximations of the Wannier functions {φj(y)}|N |−1

j=0 in terms of the

corresponding functions {φS,j (y)}|N |−1
j=0 which can be calculated analytically. By construction,

F̃ N(x, y) reproduces properly the essential singular features of FN(x, y), in particular the
phase pattern, sufficiently close to the vortices.

6. Quasiperiodic eigenvectors of periodic matrices

Consider a p × p Hermitian or unitary matrix M whose elements {Mm,m′ (x, y)}p−1
m,m′=0 are

smooth periodic functions of (x, y) with unit cell [0, 1)2. We assume that the p eigenvalues
λl(x, y), l = 1, . . . , p, are nondegenerate for all (x, y). The ‘band’ functions {λl(x, y)}pl=1
are obviously periodic with unit cell [0, 1)2. However, the normalized eigenvectors
Vl(x, y) = {νl(m; x, y)}p−1

m=0 (column vectors) are determined up to an arbitrary phase
factor, so that they may be only quasiperiodic on [0, 1)2. More precisely, they will satisfy



10112 I Dana and V E Chernov

conditions (1) and (2) with phases α(x, y) and β(x, y) depending on l but not, of course, on
the component m. In particular, all the components of an eigenvector will have the same total
vorticity Nl in [0, 1)2. The integer Nl is the Chern index associated with band l.

For example, in the context of quantum dynamics on a phase-space torus, the vector
{νl(m; w)}p−1

m=0 ((x, y) → w) determines a toral eigenstate (29) and is an eigenvector of a
p × p unitary matrix M(w) representing the evolution operator [13, 15]. This matrix is
periodic in a Brillouin zone and {νl(m; w)}p−1

m=0 is generally quasiperiodic in this zone with
Chern index Nl reflecting quantum signatures of order and chaos in a semiclassical regime
[13–16]. Another example is magnetic Bloch states which are determined by eigenvectors of
a Hermitian matrix representing the Hamiltonian [7]. This matrix is periodic in a ‘magnetic
Brillouin zone’ and the Chern index of an eigenvector gives the integer Hall conductance (in
units of e2/h) carried by the corresponding magnetic band [3–5, 7, 8].

It is not clear, a priori, how quasiperiodicity can emerge from the diagonalization of
a strictly periodic matrix. We give here a simple explanation of the origin of continuous
quasiperiodic eigenvectors using the equivalence concept introduced in the previous section.
At the same time, a natural method for calculating these eigenvectors will become evident.

To obtain a particular eigenvector V(x, y) (for simplicity, the band label l is suppressed
here), we proceed as follows. First, the band function λ(x, y) is calculated as usual
by diagonalizing M. Then, the value of one component, say m = 0, is fixed to 1.
The other components, denoted by {ν̃(m; x, y)}p−1

m=1, satisfy the system of equations{∑p−1
m′=1 M̃m,m′(x, y)ν̃(m′; x, y) = −Mm,0(x, y)

}p−1
m=1, where M̃ is the (p − 1) × (p − 1)

matrix {Mm,m′ (x, y)−λ(x, y)δm,m′ }p−1
m,m′=1. Since λ(x, y) is a nondegenerate eigenvalue of M,

this system of equations has a unique solution {ν̃(m; x, y)}p−1
m=1 which can be formally written

as

ν̃(m; x, y) = �m(x, y)

�0(x, y)
(39)

where �0(x, y) is the determinant of M̃ and {�m(x, y)}p−1
m=0 are all strictly periodic and at

least continuous functions of (x, y). Using the equivalence relation in (36), we can then write

�m(x, y) = ψm(x, y)FS,Vm (x, y) m = 0, . . . , p − 1 (40)

where all the functions {ψm(x, y)}p−1
m=0 are strictly periodic, nonvanishing and continuous, and

the standard QPFs {FS,Vm (x, y)}p−1
m=0 are strictly periodic, i.e. they all have total vorticityN = 0

(N+ = N−). We now distinguish between three cases. (a) Functions (40) have no zero in
common to all of them. In this case, the normalized eigenvector is given simply by

V(x, y) =
[
p−1∑
m=0

|�m(x, y)|2
]−1/2

{�m(x, y)}p−1
m=0 (41)

and is strictly periodic (N = 0) and at least continuous in (x, y). (b) Functions (40) have
zeros in common to all of them, but for at least one of these zeros the vortex characteristics
(η, ε, θ) in the case of �0(x, y) are different from those in the case of �m(x, y), for some
m > 0. Then, using arguments similar to those leading to (35), it follows that ν̃(m; x, y)
must have finite discontinuities at this zero. However, by considering the system of above
equations satisfied by {ν̃(m; x, y)}p−1

m=1, one can easily see that such discontinuities are not
possible since the elements of M are smooth functions. Therefore, this case cannot occur.
(c) Functions (40) have precisely N̄ zeros in common to all of them, with the same vortex
characteristics {(x0,i , y0,i ); ηi, εi, θi}N̄i=1. Consider the standard QPF FS,Vc (x, y) with these
vortex characteristics. Because of (27) and (40), FS,Vc (x, y) is just the ‘common factor’ of
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{�m(x, y)}p−1
m=0, so that the functions {�′

m(x, y) = �m(x, y)/FS,Vc(x, y)}p−1
m=0 are well defined

and at least continuous. Clearly, these functions have no zero in common and they are all
quasiperiodic with total vorticity N = −Nc, where Nc = ∑N̄

i=1 ηi . By replacing �m(x, y)

in (41) by �′
m(x, y), we then obtain a normalized, quasiperiodic and at least continuous

eigenvector with N = −Nc.
We remark thatN = −Nc is just the total vorticity of the zeros common to all the functions

{1/ν̃(m; x, y)}p−1
m=1 (see (39)). Thus, by considering the phase plots of these easily calculable

functions, the Chern index N is immediately determined. We also remark that a well-known
relation satisfied by the Chern indices,

∑p

l=1 Nl = 0 (see, e.g., [4]), can be simply proved as
follows. Consider the matrix S which diagonalizes M, i.e. S−1MS = diag(λ1, . . . , λp). This
matrix (and its inverse) always exists and its columns are just the orthonormal eigenvectors,
S = (V1, . . . ,Vp). Since the eigenvector components are at least continuous functions of
(x, y), also�(x, y) ≡ det[S(x, y)] is such a function. In addition, it is easy to see (using, e.g.,
the simplified quasiperiodicity conditions (3) and (4)) that�(x, y) is a quasiperiodic function
with total vorticity NT = ∑p

l=1Nl . Now, the vortices of a continuous function are also zeros
of this function. Thus, if NT �= 0 �(x, y) must have zeros in [0, 1)2, implying that S−1 does
not exist for all (x, y). Therefore,NT = 0.

7. Conclusions

Vortices of complex functions are singular entities associated with important physical
properties and their structure can be measured experimentally. In the case of quasiperiodic
functions (QPFs), the vortices form a periodic pattern and in each unit cell one generally has
a finite number Nv of vortices with total vorticity N (|N | � Nv). While N is an important
topological characterization, it is not sensitive to small changes of the system and does not
provide detailed information about the QPF. A much finer characterization is given by the full
vortex structure V in one unit cell. We have shown that a ‘standard’ QPF FS,V(x, y) with
arbitrary V can be explicitly constructed as a product (27) of Nv elementary QPFs associated
with the individual vortices. Then, a general QPF with vortex structure V must be an element
of the equivalence class CV = {FN(x, y) = ψ(x, y)FS,V(x, y)}, for all strictly periodic,
nonvanishing and at least continuous functions ψ(x, y). If the vortices are all positive and
isotropic, FS,V(x, y) is essentially the coherent-state representation of a general quantum state
on a phase-space torus. This expresses the well-known fact [11] that such a state is completely
determined by the Nv = N vortices. In general, a QPF can be approximately reconstructed
from its vortex structureV on the basis ofFS,V(x, y) and the equivalence concept (see section 5).
As another application of this concept, we have proposed a simple method for calculating the
continuous quasiperiodic eigenvectors of periodic matrices. The normalized eigenvectors
are determined only up to an arbitrary continuous phase factor. This arbitrariness and the
continuity of the eigenvectors are needed, e.g., in the construction of an orthogonal set of
localized orbitals in a magnetic field (‘magnetic Wannier functions’) [6, 7, 10]. This is an
example where a natural arbitrariness in the choice of ψ(x, y) turns out to be advantageous.

The vortex-structure characterization of QPFs may have applications to the quantum-
chaos problem on a phase-space torus [12–16] (see also sections 4.2 and 6). For h = 1/p
( p integer) and for given boundary conditions specified by a quasivector w in the Brillouin zone
(BZ), there are p toral eigenstates |�l,w〉, l = 1, . . . , p, corresponding to p levels. As w varies
in the BZ, each level broadens into a band l. At fixed l and in an arbitrary representation,
|�l,w〉 is generally a QPF in the BZ with Chern index (total vorticity) σl [13, 15]. An
average increase in |σl|, as a nonintegrability parameter is varied, is a quantum signature of an
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order-chaos transition [13, 14, 16, 25]. However, since σl can change only at band degeneracies
which are isolated in parameter space, the Chern index is not a sensitive measure of this
transition.

Let us therefore consider the vortex structure of |�l,w〉 at a finer level. Since |�l,w〉 is not
an analytic function of w in any representation, we expect it to exhibit generic vortices, i.e.
anisotropic and with different signs. This vortex structure is generally much more sensitive
to small variations of the parameter than the Chern index. For example, a drastic change such
as the birth of a pair of vortices of opposite signs by bifurcation (compare with relation (28)),
is not detected by the Chern index since σl is conserved under this change. Bifurcations and
band degeneracies eventually generate a large number of vortices in a strong-chaos regime.
An interesting question is then to what extent the vortex characteristics in this regime satisfy
statistics close to those of Gaussian random waves [27]. In general, an investigation of the
full vortex structure and its changes under variations of parameters should lead to a much
more complete understanding of the fingerprints of classical nonintegrability on the quantum
properties in a semiclassical regime.
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Appendix. Simplified quasiperiodicity conditions

We show here how the quasiperiodicity conditions (1) and (2) can be reduced to the much
simpler form (3) and (4) by a suitable phase transformation. For the convenience of the reader,
we also give the derivation of expression (5), first obtained in [22].

We start by deriving a relation between the total vorticity N and the functions α(x, y) and
β(x, y) in (1) and (2). It follows from (1) that by increasing y to y + 1 the phase of F(x + 1, y)
changes relative to that of F(x, y) by α(x, y + 1)−α(x, y). Equation (2) implies, on the other
hand, that by decreasing x from x + 1 to x the phase of F(x, y + 1) changes relative to that
of F(x, y) by β(x, y)− β(x + 1, y). Thus, the total phase change 2πN by going around the
unit-cell boundary counterclockwise is given by

α(x, y + 1)− α(x, y) + β(x, y)− β(x + 1, y) = 2πN. (42)

The phase α(x, y) in (1) can be eliminated by making a phase transformation F(x, y) →
F ′(x, y) = exp[−iϕ′(x, y)]F(x, y) so that

F ′(x + 1, y) = F ′(x, y). (43)

This is accomplished by requiring that

ϕ′(x + 1, y)− ϕ′(x, y) = α(x, y). (44)

If α(x, y) is strictly periodic in x (α(x + 1, y) = α(x, y)), equation (44) is satisfied by
choosing ϕ′(x, y) = xα(x, y). Otherwise, we assume, without loss of generality, that the
smooth function α(x, y) is a polynomial of arbitrary finite order L in x:

α(x, y) =
L∑
l=0

ᾱl(y)x
l. (45)
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Accordingly, we assume that

ϕ′(x, y) =
L+1∑
l=1

ϕ̄l(y)x
l. (46)

By inserting (45) and (46) in (44), we find that the unknown coefficients ϕ̄l(y) satisfy the
linear system of equations

L+1∑
l=l′+1

(
l

l′

)
ϕ̄l(y) = ᾱl′(y) l′ = 0, . . . , L (47)

where
(
l

l′
)

are binomial coefficients. The system (47) can be easily solved by iteration, starting
from l′ = L: ϕ̄L+1(y) = ᾱL(y)/(L + 1), ϕ̄L(y) = ᾱL−1(y)/L− ᾱL(y)/2, etc.

In the y variable, F ′(x, y) satisfies the quasiperiodicity condition:

F ′(x, y + 1) = exp[iβ ′(x, y)]F ′(x, y) (48)

where β ′(x, y) = β(x, y) + ϕ′(x, y)− ϕ′(x, y + 1). Using (42) and (44), we find that

β ′(x, y)− β ′(x + 1, y) = 2πN. (49)

Then, by writing β ′(x, y) = β̃(x, y) − 2πNx, it follows from (49) that β̃(x, y) is strictly
periodic in x, β̃(x+1, y) = β̃(x, y). If the phase β̃(x, y) could be eliminated by a second-phase
transformation, F ′(x, y) → FN(x, y) = exp[−iϕ̃(x, y)]F ′(x, y), FN(x, y) would satisfy,
because of (48), condition (4). To eliminate β̃(x, y), we require that

ϕ̃(x, y + 1)− ϕ̃(x, y) = β̃(x, y). (50)

Equation (50) can be solved for ϕ̃(x, y) by the same procedure used above to solve
equation (44). Since β̃(x + 1, y) = β̃(x, y), also ϕ̃(x + 1, y) = ϕ̃(x, y). Thus, FN(x, y)
is strictly periodic in x like F ′(x, y) (see (43)), i.e. it satisfies also condition (3).

Expression (5) for N �= 0 is derived as follows. Since FN(x, y) is periodic in x
(equation (3)), it can be expanded in a Fourier series with coefficients fn(y), n integer.
Using this expansion in equation (4), we find that fn(y + 1) = fn+N(y). By iterating
this relation forward and backward l times starting from any of the |N | initial values
n = s = 0, . . . , |N | − 1, it follows that fn(y) = fs(y + l), where n is uniquely
decomposed as m = lN + s. Thus, for all n, fn(y) can be simply expressed in terms
of just the |N | functions {fs(y)}|N |−1

s=0 . In turn, these latter functions can always be
written as finite Fourier expansions fs(y) = ∑|N |−1

j=0 exp(2π ijs/|N |)φj (y + s/N), where

φj(y) ≡ |N |−1 ∑|N |−1
s=0 exp(−2π ijs/|N |)fs(y − s/N), j = 0, . . . , |N | − 1. Expression (5)

is then obtained.
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